Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.257
Filtrar
1.
Acta Vet Hung ; 72(1): 24-32, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38578702

RESUMO

Feeding costs of farmed insects may be reduced by applying alternative nitrogen sources such as urea that can partly substitute true proteins. The aim of this study was to examine the effects of different nitrogen sources on body weight (BW) and survival rate (SR) of the Jamaican field cricket (JFC, Gryllus assimilis), the house cricket (HC, Acheta domesticus), yellow mealworm larvae (YM, Tenebrio molitor) and superworm larvae (SW, Zophobas morio). Crickets were either housed individually or in groups, and larvae were group-housed. Six isonitrogenous feeds composed of 3.52% nitrogen were designed for all four insect species using four independent replicates with micellar casein: urea proportions of 100-0%, 75-25%, 50-50%, 25-75%, 0-100% and 100% extracted soybean meal. All selected insect species were able to utilise urea. However, urea as the only nitrogen source resulted in low final BW. In the HC, the JFC, and the YM on nitrogen basis urea can replace 25% of micellar casein without having any negative effects on BW and SR in comparison to the 100% micellar casein group. In the SW, a 25% urea level did not have a significant effect on final BW, but SR decreased significantly.


Assuntos
Besouros , Gryllidae , Tenebrio , Animais , Caseínas/metabolismo , Insetos , Larva/metabolismo , Tenebrio/metabolismo , Peso Corporal , Nitrogênio , Suplementos Nutricionais
2.
J Extracell Vesicles ; 13(4): e12422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602306

RESUMO

Human milk contains extracellular vesicles (HMEVs). Pre-clinical models suggest that HMEVs may enhance intestinal function and limit inflammation; however, it is unknown if HMEVs or their cargo survive neonatal human digestion. This limits the ability to leverage HMEV cargo as additives to infant nutrition or as therapeutics. This study aimed to develop an EV isolation pipeline from small volumes of human milk and neonatal intestinal contents after milk feeding (digesta) to address the hypothesis that HMEVs survive in vivo neonatal digestion to be taken up intestinal epithelial cells (IECs). Digesta was collected from nasoduodenal sampling tubes or ostomies. EVs were isolated from raw and pasteurized human milk and digesta by density-gradient ultracentrifugation following two-step skimming, acid precipitation of caseins, and multi-step filtration. EVs were validated by electron microscopy, western blotting, nanoparticle tracking analysis, resistive pulse sensing, and super-resolution microscopy. EV uptake was tested in human neonatal enteroids. HMEVs and digesta EVs (dEVs) show typical EV morphology and are enriched in CD81 and CD9, but depleted of ß-casein and lactalbumin. HMEV and some dEV fractions contain mammary gland-derived protein BTN1A1. Neonatal human enteroids rapidly take up dEVs in part via clathrin-mediated endocytosis. Our data suggest that EVs can be isolated from digestive fluid and that these dEVs can be absorbed by IECs.


Assuntos
Líquidos Corporais , Vesículas Extracelulares , Recém-Nascido , Lactente , Humanos , Leite Humano/metabolismo , Vesículas Extracelulares/metabolismo , Caseínas/metabolismo
3.
J Agric Food Chem ; 72(15): 8285-8303, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38588092

RESUMO

The gut barrier plays an important role in health maintenance by preventing the invasion of dietary pathogens and toxins. Disruption of the gut barrier can cause severe intestinal inflammation. As a natural source, milk is enriched with many active constituents that contribute to numerous beneficial functions, including immune regulation. These components collectively serve as a shield for the gut barrier, protecting against various threats such as biological, chemical, mechanical, and immunological threats. This comprehensive review delves into the active ingredients in milk, encompassing casein, α-lactalbumin, ß-lactoglobulin, lactoferrin, the milk fat globular membrane, lactose, transforming growth factor, and glycopeptides. The primary focus is to elucidate their impact on the integrity and function of the gut barrier. Furthermore, the implications of different processing methods of dairy products on the gut barrier protection are discussed. In conclusion, this study aimed to underscore the vital role of milk and dairy products in sustaining gut barrier health, potentially contributing to broader perspectives in nutritional sciences and public health.


Assuntos
Caseínas , Leite , Animais , Leite/metabolismo , Caseínas/metabolismo , Lactalbumina/metabolismo , Lactoglobulinas/metabolismo , Dieta
4.
Sci Rep ; 14(1): 9117, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643232

RESUMO

Milk protein content is an important index to evaluate the quality and nutrition of milk. Accumulating evidence suggests that microRNAs (miRNAs) play important roles in bovine lactation, but little is known regarding the cross-kingdom regulatory roles of plant-derived exogenous miRNAs (xeno-miRNAs) in milk protein synthesis, particularly the underlying molecular mechanisms. The purpose of this study was to explore the regulatory mechanism of alfalfa-derived xeno-miRNAs on proliferation and milk protein synthesis in bovine mammary epithelial cells (BMECs). Our previous study showed that alfalfa miR159a (mtr-miR159a, xeno-miR159a) was highly expressed in alfalfa, and the abundance of mtr-miR159a was significantly lower in serum and whey from high-protein-milk dairy cows compared with low-protein-milk dairy cows. In this study, mRNA expression was detected by real-time quantitative PCR (qRT-PCR), and casein content was evaluated by enzyme-linked immunosorbent assay (ELISA). Cell proliferation and apoptosis were detected using the cell counting kit 8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, western blot, and flow cytometry. A dual-luciferase reporter assay was used to determine the regulation of Protein Tyrosine Phosphatase Receptor Type F (PTPRF) by xeno-miR159a. We found that xeno-miR159a overexpression inhibited proliferation of BMEC and promoted cell apoptosis. Besides, xeno-miR159a overexpression decreased ß-casein abundance, and increased α-casein and κ-casein abundance in BMECs. Dual-luciferase reporter assay result confirmed that PTPRF is a target gene of xeno-miR159a. These results provide new insights into the mechanism by which alfalfa-derived miRNAs regulate BMECs proliferation and milk protein synthesis.


Assuntos
MicroRNAs , Proteínas do Leite , Feminino , Bovinos , Animais , Proteínas do Leite/metabolismo , Medicago sativa/genética , Medicago sativa/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Glândulas Mamárias Animais/metabolismo , Caseínas/genética , Caseínas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Luciferases/metabolismo , Células Epiteliais/metabolismo
5.
Anim Biotechnol ; 35(1): 2334725, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38623994

RESUMO

The lactation character of dairy goats is the most important characteristic, and milk protein is an important index to evaluate milk quality. Casein accounts for more than 80% of the total milk protein in goat milk and is the main component of milk protein. Using GMECs (goat mammary epithelial cells) as the research object, the CHECK2 vector of the CSN1S1 gene and the overexpression vector of pcDNA 3.1 were constructed, and the mimics of miR-2284b and the interfering RNA of CSN1S1 were synthesized. Using PCR, RT-qPCR, a dual luciferase activity detection system, EdU, CCK8, cell apoptosis detection and ELISA detection, we explored the regulatory mechanism and molecular mechanism of miR-2284b regulation of αs1-casein synthesis in GMECs. miR-2284b negatively regulates proliferation and apoptosis of GMECs and αs1-casein synthesis. Two new gene sequences of CSN1S1 were discovered. CSN1S1-1/-2 promoted the proliferation of GMECs and inhibited cell apoptosis. However, it had no effect on αs1-casein synthesis. MiR-2284b negatively regulates αs1-casein synthesis in GMECs by inhibiting the CSN1S1 gene. These results all indicated that miR-2284b could regulate αs1-casein synthesis, thus playing a theoretical guiding role in the future breeding process of dairy goats and accelerating the development of dairy goat breeding.


Assuntos
Caseínas , MicroRNAs , Feminino , Animais , Caseínas/genética , Caseínas/metabolismo , Proteínas do Leite , Cabras/fisiologia , Células Epiteliais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Glândulas Mamárias Animais/metabolismo
6.
J Agric Food Chem ; 72(12): 6189-6202, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501577

RESUMO

The hexapeptide YPVEPF with strong sleep-enhancing effects could be detected in rat brain after a single oral administration as we previously proved. In this study, the mechanism and molecular effects of YPVEPF in the targeted stress-induced anxiety mice were first investigated, and its key active structure was further explored. The results showed that YPVEPF could significantly prolong sleep duration and improve the anxiety indexes, including prolonging the time spent in the open arms and in the center. Meanwhile, YPVEPF showed strong sleep-enhancing effects by significantly increasing the level of the GABA/Glu ratio, 5-HT, and dopamine in brain and serum and regulating the anabolism of multiple targets, but the effects could be blocked by bicuculline and WAY100135. Moreover, the molecular simulation results showed that YPVEPF could stably bind to the vital GABAA and 5-HT1A receptors due to the vital structure of Tyr-Pro-Xaa-Xaa-Pro-, and the electrostatic and van der Waals energy played dominant roles in stabilizing the conformation. Therefore, YPVEPF displayed sleep-enhancing and anxiolytic effects by regulating the GABA-Glu metabolic pathway and serotoninergic system depending on distinctive self-folding structures with Tyr and two Pro repeats.


Assuntos
Ansiolíticos , Distúrbios do Início e da Manutenção do Sono , Ácido gama-Aminobutírico/análogos & derivados , Ratos , Camundongos , Animais , Caseínas/metabolismo , Receptores de GABA-A/metabolismo , Serotonina , Ansiolíticos/farmacologia , Ansiedade
7.
Food Chem ; 447: 138882, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452537

RESUMO

The two limiting factors for lentil protein utilization are water solubility and digestibility. In this study, we utilized two non-thermal techniques: (1) protein complexation of lentil and casein proteins using the pH-shifting method and (2) protein conjugation with trehalose to produce trehalose-conjugated lentil-casein protein complexes (T-CPs) with enhanced water solubility and digestibility. The protein structure of the T-CPs was analyzed for secondary protein structure, conformation protein, and tertiary protein structure using Fourier-transform infrared, UV, and fluorescence spectroscopies, respectively. The surface hydrophobicity and surface charge of T-CPs solution at pH 7.0 changed significantly (P < 0.05). Using these two non-thermal techniques, the water solubility and digestibility of T-CPs increased significantly (P < 0.05) by 85 to 89 % and 80 to 85 %, respectively. The results of this study suggested that these non-thermal techniques could enhance the surface and protein structure properties, improving water solubility and digestibility.


Assuntos
Caseínas , Lens (Planta) , Solubilidade , Caseínas/metabolismo , Lens (Planta)/química , Trealose , Água/química
8.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38479791

RESUMO

Lactic acid bacteria (LAB) have evolved into fastidious microorganisms that require amino acids from environmental sources. Some LAB have cell envelope proteases (CEPs) that drive the proteolysis of high molecular weight proteins like casein in milk. CEP activity is typically studied using casein as the predominant substrate, even though CEPs can hydrolyze other protein sources. Plant protein hydrolysis by LAB has rarely been connected to the activity of specific CEPs. This study aims to show the activity of individual CEPs using LAB growth in a minimal growth medium supplemented with high molecular weight casein or potato proteins. Using Lactococcus cremoris MG1363 as isogenic background to express CEPs, we demonstrate that CEP activity is directly related to growth in the protein-supplemented minimal growth media. Proteolysis is analyzed based on the amino acid release, allowing a comparison of CEP activities and analysis of amino acid utilization by L. cremoris MG1363. This approach provides a basis to analyze CEP activity on plant-based protein substrates as casein alternatives and to compare activity of CEP homologs.


Assuntos
Lactococcus lactis , Peptídeo Hidrolases , Animais , Peptídeo Hidrolases/metabolismo , Caseínas/metabolismo , Peso Molecular , Endopeptidases/química , Lactococcus lactis/metabolismo , Aminoácidos/metabolismo
9.
Food Chem ; 448: 139054, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552465

RESUMO

Quercetin (QUE) sufferred from poor processing adaptability and absorbability, hindering its application as a dietary supplement in the food industry. In this study, fatty acids (FAs)-sodium caseinate (NaCas) ligand complexes carriers were fabricated to improve the aqueous dispersibility, storage/thermal stability, and bioaccessibility of QUE using an ultrasound method. The results indicated that all six selected common dietary FAs formed stable hydrophilic complexes with NaCas and the FAs-NaCas complexes achieved an encapsulation efficiency greater than 90 % for QUE. Furthermore, the introduction of FAs enhanced the binding affinity between NaCas and QUE, but did not change the binding mode (static bursting) and types of intermolecular forces (mainly hydrogen bonding). In addition, a distinct improvement was discovered in the storage stability (>2.37-fold), thermal processing stability (>32.54 %), and bioaccessibility (>2.37-fold) of QUE. Therefore, the FAs-NaCas ligand complexes could effectively protect QUE to minimize degradation as fat-soluble polyphenol delivery vehicles.


Assuntos
Caseínas , Ácidos Graxos , Quercetina , Quercetina/química , Quercetina/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Caseínas/química , Caseínas/metabolismo , Estabilidade de Medicamentos , Disponibilidade Biológica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Água/química , Gorduras na Dieta/metabolismo
10.
J Agric Food Chem ; 72(11): 6040-6052, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38454851

RESUMO

One type of large and intricate post-translational modification of milk proteins that has significant biological implications is phosphorylation. The characterization of phosphoproteins found in the bovine milk fat globule membrane (MFGM) is still mostly unknown. Here, label-free phosphoproteomics was used to identify 94 phosphorylation sites from 54 MFGM phosphoproteins in bovine colostrum (BC) and 136 phosphorylation sites from 91 MFGM phosphoproteins in bovine mature milk (BM). αs1-Casein and ß-casein were the most phosphorylated proteins in bovine colostrum. In bovine mature milk, perilipin-2 was the protein with the greatest number of phosphorylation sites. The results show that bovine colostrum MFGM phosphoproteins were mainly involved in immune function, whereas bovine mature MFGM phosphoproteins were mainly involved in metabolic function. Plasminogen and osteopontin were the most strongly interacting proteins in colostrum, whereas perilipin-2 was the most strongly interacting protein in bovine mature milk. This work demonstrates the unique alterations in the phosphorylation manner of the bovine MFGM protein during lactation and further expands our knowledge of the site characteristics of bovine MFGM phosphoproteins. This result confirms the value of MFGM as a reference ingredient for infant formula during different stages.


Assuntos
Colostro , Glicoproteínas , Leite , Feminino , Gravidez , Lactente , Humanos , Animais , Colostro/metabolismo , Perilipina-2/metabolismo , Leite/metabolismo , Glicolipídeos/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas do Leite/metabolismo , Caseínas/metabolismo
11.
Food Chem ; 446: 138807, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422640

RESUMO

Satisfactory separation of milk-derived extracellular vesicles (MEVs) is important for the downstream analysis of the functions and properties of MEVs. However, the presence of abundant proteins in milk hindered the separation of MEVs. In this study, three pretreatment methods, including sodium citrate (SC), acetic acid (AA), and high-speed centrifugation, were adopted to separate MEVs from goat milk while minimizing the impact of protein. The MEVs were then characterized by nanoparticle tracking, transmission electron microscopy and western blotting experiments. The results indicated that pretreatments with AA and SC greatly decreased the impact of casein, but AA pretreatment damaged the surface structure of MEVs. Additionally, the differential centrifugation process resulted in a slight loss of MEVs. Overall, MEVs with small size and high purity can be obtained under 125 k × g centrifugation combined with SC pretreatment, which suggests a promising method for separation of MEVs from goat milk.


Assuntos
Vesículas Extracelulares , Leite , Animais , Leite/química , Citrato de Sódio , Centrifugação , Vesículas Extracelulares/metabolismo , Caseínas/metabolismo , Cabras/metabolismo
12.
Food Chem ; 444: 138681, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38335684

RESUMO

Lactulosyllysine (LL) widely exists in thermally processed dairy products, while the metabolism and transformation of LL remain poorly understood. We aimed to elucidate the metabolic pathways of LL and its impact on body health by subjecting C57BL/6 mice to a short-term ll-fortified casein diet. Our findings indicated that casein-bound LL might be metabolized and transformed into 3-deoxyglucosone through fructosamine-3-kinase (FN3K) in vivo, which promoted α-dicarbonyl stress, ultimately leading to the formation of advanced glycation end products (AGEs) in various tissues/organs, accompanied by systemic inflammation. The levels of AGEs formation in tissues/organs at various stages of casein-bound LL intake exhibited dynamic changes, correlating with alterations in the expression of FN3K and α-dicarbonyl compounds metabolic detoxification enzymes. The negative effects induced by casein-bound LL cannot be fully reversed by switching to a standard diet for equal periods. Consumption of dairy products rich in LL raises concerns as a potential risk factor for healthy individuals.


Assuntos
Caseínas , Produtos Finais de Glicação Avançada , Camundongos , Animais , Produtos Finais de Glicação Avançada/metabolismo , Caseínas/metabolismo , Camundongos Endogâmicos C57BL , Glicosilação , Inflamação
13.
Food Chem ; 443: 138510, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38281416

RESUMO

ß-casein is the second most abundant form of casein in milk. Changes in amino acid sequence at specific positions in the primary structure of ß-casein in milk will produce gene mutations that affect the physicochemical properties of dairy products and the hydrolysis site of digestive enzymes. The screening method of ß-casein allele frequency detection in dairy products also has attracted the extensive attention of scientists and farmers. The A1 and A2 ß-casein is the two usual mutation types, distinguished by histidine and proline at position 67 in the peptide chain. This paper summarizes the effects of A1 and A2 ß-casein on the physicochemical properties of dairy products and evaluates the effects on human health, and the genotyping methods were also concluded. Impressively, this review presents possible future opportunities and challenges for the promising field of A2 ß-casein, providing a valuable reference for the development of the functional dairy market.


Assuntos
Caseínas , Leite , Humanos , Animais , Bovinos/genética , Caseínas/metabolismo , Leite/química , Mutação
14.
Food Res Int ; 176: 113845, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163735

RESUMO

How different dietary fibers including pectin, cellulose and lignin affect casein digestibility was studied using in vitro static protocols. Peptides' profile, free amino acids (AAs) content, casein-DF interactions and their influences on enzymatic activities of proteolytic enzymes were studied using combined techniques. Under gastric and intestinal digestive conditions, while pectin could reduce casein digestibility (with an averaged decrease of 12.15% and 7.83, respectively) through both depletion flocculation and hydrogen-binding interactions, lignin inhibited the digestion of casein straightly through reducing the enzymatic activity of proteolytic enzymes, thereby altering the production of free AAs. Although cellulose showed the least detrimental effects, it still significantly reduced the content of Thr, Glu, Val, Leu, Phe, Lys, and no Arg was released. Deeper insight into casein-DF interactions and their influences on casein digestibility improves the development of more effective forms of DF for improving AA homeostasis in individuals.


Assuntos
Caseínas , Lignina , Humanos , Caseínas/metabolismo , Ração Animal/análise , Digestão , Aminoácidos/metabolismo , Fibras na Dieta/metabolismo , Celulose/farmacologia , Pectinas/farmacologia , Peptídeo Hidrolases/farmacologia
15.
Food Funct ; 15(3): 1237-1249, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38227487

RESUMO

Gut hormones are produced by enteroendocrine cells (EECs) found along the intestinal epithelium, and these cells play a crucial role in regulating intestinal function, nutrient absorption and food intake. A hydrolyzed casein diet has been reported to promote the secretion of gut hormones through the regulation of EEC development, but the underlying mechanism remains unclear. Therefore, this study was conducted to investigate whether the hydrolyzed casein diet can regulate EEC differentiation by employing mouse and organoid models. Mice were fed diets containing either casein (casein group) or hydrolyzed casein (hydrolyzed casein group) as the sole protein source. The hydrolyzed casein diet upregulated the expression of transcription factors, induced EEC differentiation, increased fasting serum ghrelin concentrations and promoted gastrointestinal (GI) motility in the duodenum compared to the casein diet. Interestingly, these differences could be abolished when there is addition of antibiotics to the drinking water, suggesting a significant role of gut microbiota in the hydrolyzed casein-mediated EEC function. Further investigation showed that the hydrolyzed casein diet led to reduced microbial diversity, especially the abundance of Akkermansia muciniphila (A. muciniphila) on the duodenal mucosa. In contrast, gavage with A. muciniphila impaired EEC differentiation through attenuated neurog3 transcription factor (Ngn3) expression, mediated through the promotion of Notch signaling. Moreover, pasteurized A. muciniphila showed similar effects to enter organoids in vitro. Overall, we found that a hydrolyzed casein diet reduced the abundance of A. muciniphila and promoted Ngn3 controlling EEC differentiation and this pathway is associated with increased GI motility in mice. The findings provide new insights into the role of hydrolyzed casein in gut transit and guidelines for using hydrolyzed casein in safe formula milk.


Assuntos
Caseínas , Hormônios Gastrointestinais , Camundongos , Animais , Caseínas/metabolismo , Diferenciação Celular , Células Enteroendócrinas , Dieta , Fatores de Transcrição/metabolismo , Hormônios Gastrointestinais/metabolismo , Motilidade Gastrointestinal
16.
Nat Metab ; 6(1): 39-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38167726

RESUMO

Proteins activate small intestinal calcium sensing receptor (CaSR) and/or peptide transporter 1 (PepT1) to increase hormone secretion1-8, but the effect of small intestinal protein sensing and the mechanistic potential of CaSR and/or PepT1 in feeding and glucose regulation remain inconclusive. Here we show that, in male rats, CaSR in the upper small intestine is required for casein infusion to increase glucose tolerance and GLP1 and GIP secretion, which was also dependent on PepT1 (ref. 9). PepT1, but not CaSR, is required for casein infusion to lower feeding. Upper small intestine casein sensing fails to regulate feeding, but not glucose tolerance, in high-fat-fed rats with decreased PepT1 but increased CaSR expression. In the ileum, a CaSR-dependent but PepT1-independent pathway is required for casein infusion to lower feeding and increase glucose tolerance in chow-fed rats, in parallel with increased PYY and GLP1 release, respectively. High fat decreases ileal CaSR expression and disrupts casein sensing on feeding but not on glucose control, suggesting an ileal CaSR-independent, glucose-regulatory pathway. In summary, we discover small intestinal CaSR- and PepT1-dependent and -independent protein sensing mechanisms that regulate gut hormone release, feeding and glucose tolerance. Our findings highlight the potential of targeting small intestinal CaSR and/or PepT1 to regulate feeding and glucose tolerance.


Assuntos
Hormônios Gastrointestinais , Receptores de Detecção de Cálcio , Animais , Masculino , Ratos , Caseínas/metabolismo , Hormônios Gastrointestinais/metabolismo , Glucose/metabolismo , Intestino Delgado/metabolismo , Receptores de Detecção de Cálcio/metabolismo
17.
Biotechnol J ; 19(2): e2300287, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38047759

RESUMO

Gene loci of highly expressed genes provide ideal sites for transgene expression. Casein genes are highly expressed in mammals leading to the synthesis of substantial amounts of casein proteins in milk. The α-casein (CSN1S1) gene has assessed as a site of transgene expression in transgenic mice and a mammary gland cell line. A transgene encoding an antibody light chain gene (A1L) was inserted into the α-casein gene using sequential homologous and site-specific recombination. Expression of the inserted transgene is directed by the α-casein promoter, is responsive to lactogenic hormone activation, leads to the synthesis of a chimeric α-casein/A1L transgene mRNA, and secretion of the recombinant A1L protein into milk. Transgene expression is highly consistent in all transgenic lines, but lower than that of the α-casein gene (4%). Recombinant A1L protein accounted for 0.5% and 1.6% of total milk protein in heterozygous and homozygous transgenic mice, respectively. The absence of the α-casein protein in homozygous A1L transgenic mice leads to a reduction of total milk protein and delayed growth of the pups nursed by these mice. Overall, the data demonstrate that the insertion of a transgene into a highly expressed endogenous gene is insufficient to guarantee its abundant expression.


Assuntos
Caseínas , Lactação , Feminino , Camundongos , Animais , Caseínas/genética , Caseínas/metabolismo , Lactação/genética , Lactação/metabolismo , Camundongos Transgênicos , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Proteínas Recombinantes/metabolismo , Transgenes/genética , Glândulas Mamárias Animais/metabolismo , Mamíferos/genética
18.
Cell Biochem Biophys ; 82(1): 175-191, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37978103

RESUMO

Riboflavin (RF) is a vitamin that only exists in plants and microorganisms and must be procured externally by humans. On the other hand, there are two major allergic factors in cow's milk, including ß-lactoglobulin (ßLG) and ß-casein (ßCN), while their allergic properties can be eliminated by binding to micronutrients. In this regard, we examined the binding process of RF to ßLG and ßCN in the binary and ternary systems by different spectroscopies such as zeta potential, electric conductivity, and molecular modeling. According to the result of the fluorescence spectrum regarding the interaction of RF with ßLG and ßCN in binary and ternary systems, an increase in RF concentration declined the fluorescence intensity of three systems and also caused the quenching of proteins. Static quenching plays a pivotal role in the formation of stable interactions. The obtained thermodynamic parameters by Van't Hoff equation ascertained the predominance of hydrogen bonds and van der Waals interaction in all the systems. Considering how the negative value of ΔH0 resulted in the negative value of ΔG0, the systems were assumed to be enthalpy driven. The outcomes of circular dichroism (CD) disclosed that the attachment of RF to the targets of systems increased their a-helix content, which particularly included the binding of RF to ßLG that led to the conversion of ß-sheet to α-helix content. As indicated by the results of zeta potential, the low concentration of RF contained the dominance of hydrophobic forces in the interactions, whereas the enlargement of this concentration prevailed electrostatic forces. Moreover, conductometry measurements showed an extension in the rate of ionizable groups due to the addition of RF to the systems, which may increase the probability of an interaction between RF, ßCN, and ßLG in binary and ternary systems. In consistency with the outcomes of molecular dynamics simulation, the data of molecular docking approved the capability of RF in forming strong and stable interactions with ßCN and ßLG.


Assuntos
Caseínas , Lactoglobulinas , Humanos , Caseínas/metabolismo , Simulação de Acoplamento Molecular , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Dicroísmo Circular , Termodinâmica , Simulação de Dinâmica Molecular , Riboflavina/metabolismo , Ligação Proteica , Sítios de Ligação , Espectrometria de Fluorescência
19.
Int J Biol Macromol ; 254(Pt 2): 127595, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37884232

RESUMO

Recently, the biosafety of synthetic emulsifier in intestinal barrier has raised significant concerns. Casein- phosphatidylcholine (CP), which is a natural emulsifier, has better emulsification and stability. However, the effect of CP on intestinal barrier remains unknow. Intestinal permeability and lipomics analysis showed that carboxymethyl cellulose (CMC) and CP have no significant effect on intestinal barrier in normal intestinal barrier model, whereas CP increased transmembrane resistance value and remodeled lipid homeostasis in LPS induced intestinal barrier dysfunction model, indicating its superior biosafety. To explore the underlying molecular mechanism of emulsifier on intestinal barrier dysfunction, the bioinformatics analysis of six original microarray datasets including 168 cases in NCBI-Gene Expression Omnibus database showed ferroptosis-related genes showed a significant differential expression. The quantitative polymerase chain reaction analysis demonstrated that CP can repair the imbalance of lipid homeostasis induced by LPS and restore normal intestinal permeability by regulating the expression of ferroptosis-related genes, while CMC could can enhance intestinal permeability by inducing ferroptosis of intestinal epithelial cells through lipid peroxidation. In conclusion, this study highlighted CP could remodel LPS-induced intestinal barrier disfunction via regulating ferroptosis and lipid metabolism. These findings can be used as a new insight for the design of new healthy emulsifier.


Assuntos
Ferroptose , Mucosa Intestinal , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Caseínas/metabolismo , Metabolismo dos Lipídeos
20.
Br J Nutr ; 131(1): 17-26, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37485899

RESUMO

Breast milk is known to contain bioactive peptides that are released during digestion, being a major source of bioactive peptides to the new-born, some of which act against invading pathogens. However, the formation of bioactive peptides during digestion of human colostrum remains largely uninvestigated. This study aimed to investigate the formation of peptides during simulated digestion of human colostrum from adult women and to prospect antimicrobial peptides. For this purpose, we used high-resolution MS to monitor the release of peptides during in vitro digestion. Bioinformatics was used for the prospection of antimicrobial activity of peptides. During simulated digestion (oral, gastric and duodenal phases), 2318 peptide sequences derived from 112 precursor proteins were identified. At the end of simulated digestion, casein-derived peptide sequences were the most frequently observed. Among precursors, some proteins were seen for the first time in this study. The resulting peptides were rich in proline, glutamine, valine and leucine residues, providing characteristic traits of antimicrobial peptides. From bioinformatics analysis, seven peptides showed potentially high antimicrobial activity towards bacteria, viruses and fungi, from which the latter was the most prominent predicted activity. Antimicrobial peptides released during digestion may provide a defence platform with controlled release for the new-born.


Assuntos
Anti-Infecciosos , Colostro , Adulto , Gravidez , Humanos , Feminino , Proteólise , Colostro/química , Espectrometria de Massas em Tandem , Peptídeos/química , Leite Humano/metabolismo , Cromatografia Líquida , Caseínas/metabolismo , Peptídeos Antimicrobianos , Proteômica/métodos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/análise , Anti-Infecciosos/metabolismo , Digestão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...